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Critical exponents for a self-interacting, directed polymer with adsorption
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We present an exact determination of the correlation-length exponents as well as an accurate numeri-
cal estimation of the bulk and surface entropic exponents at the ordinary and special © points for a
directed-polymer model. The numerical results were obtained using an exact enumeration of walks up to

29 steps.
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Models in which an interacting directed polymer is al-
lowed to absorb to a substrate have been the focus of
much attention recently [1-5]. Essentially this has
stemmed from the possibility of calculating results
analytically for such models and the good quality of nu-
merical results relative to the isotropic case [1]. These
studies have been motivated as a way to advance the un-
derstanding of dilute solutions of polymers in contact
with a substrate, where monomer-monomer interactions
result in a collapse transition. The directed-polymer
problem appears to contain much of the physics of the
isotropic case. It has also been argued that models of this
type may correspond to a situation where the polymer
chain is subjected to a flow field [6].

Although much is known about the phase diagram for
such systems, there are few results on the critical ex-
ponents for these problems. In this Brief Report, we
present an exact estimation of the correlation-length ex-
ponents at the © point for the directed polymer, along
with a numerical determination, using exact enumeration
methods, of the bulk and surface entropic exponents at
both the ordinary and special points.

The model which has been most widely studied
comprises representing a polymer by a two-dimensional
self-avoiding random walk on a square lattice which is
directed in that steps in the negative x direction are not
allowed [7]. The walk is allowed to gain an energy K for
each visit to the adsorbing substrate and an energy J for
every pair of nonconsecutive steps which fall in the same
row but adjacent columns.

The canonical and grand canonical partition functions
can be written

Z,= 2 k' (0
walks length L

Z=3 olk'™, @)
walks
where o is the step fugacity, k= exp(K /kzT), and
7=exp(J/kyT). L is the number of monomers in the
walk, / the number of visits to the wall, and n the number
of monomer-monomer interactions. As before, the pro-
cedure is to adjust @ to the critical value required to
achieve the thermodynamic limit where
dlnZ

<L>:m, (3)

the average number of monomers, diverges. Quantities of
interest are then studied as functions of « and 7. These
include the correlation-length exponents, which may be
defined through a characteristic measure of the linear size
of the polymer, such as the end-to-end distance or the ra-
dius of gyration. Due to the anisotropy of the model
presented here, the linear size of the walk scales
differently in the x and y directions, defining two ex-
ponents

(R2Y~(L)"™ )
(R2)~(L)Y™ . 5)

The entropic exponents for polymer models may be
defined through the canonical partition functions
Z,, Z}, and Z}! for a polymer in bulk, with one end
fixed and both ends fixed to a boundary, respectively.
The canonical exponents are then expected to have
asymptotic behavior given by

Z, ~utLr—1, (6)
Z) ~ptL %)
ZM~ptp ®)

The model has the phase diagram shown in Fig. 1 in
the (k,7) plane with » adjusted to achieve the thermo-
dynamic limit. For small x and 7 the polymer is un-
bounded and extended; the number density of visited sites
is zero. Increasing « results in a continuous binding tran-
sition to a phase where the fraction of bonds at the sub-
strate is nonzero and the monomer density decays ex-
ponentially with the distance from the substrate. Increas-
ing 7 the polymer collapses into a phase in which it fills
the lattice with a density of visited sites equal to one; the
number of unvisited sites is vanishingly small.

The behavior of the directed, self-avoiding walk with
7=1 was elucidated by Privman, Forgacs, and Frisch [8].
Using transfer matrices in the limit as the width of the
system tends to infinity they found that the transition be-
tween the extended and adsorbed polymer phases occurs
at

o, =V2—1, 9)
o 1
K—~——~2__\/E . (10)
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FIG. 1. The phase diagram of a directed polymer in the («,7)
plane (after [2]). The dashed line is schematic.

They also found that in the ordinary regime, with =1,
the entropic exponents are given by y =1, y;=1, and
Y11= —+. Carvalho and Privman [9] also gave the spe-
cial point values of ;=1 and y ;=1 for a directed poly-
mer at an interface.

The full parameter space was explored numerically by
Veal, Yeomans, and Jug [1]. They found the three phases
shown in Fig. 1 using transfer matrix techniques in con-
junction with finite-size scaling arguments to recover the
behavior of the system in the limit of infinite system sizes.
They located the multicritical point where the collapsed,
extended, and adsorbed phases meet to a high degree of
accuracy and gave its location as

©0=0.2955977 , (11)
Kk=2.191488 , (12)
7=3.382976 . (13)

The location of this multicritical point was subsequently
found exactly [2,3], and found to agree with the numeri-
cal calculation of Veal, Yeomans, and Jug.

We now turn our attention to the calculation of the
correlation-length exponents defined by Egs. (4) and (5).
We consider each of the stable phases in turn.

When the polymer is extended these exponents take the
Gaussian values v, =1 and v, =1 [7]. As the polymer
collapses it tries to maximize the number of 7 bonds
while minimizing the number of bonds not involved in
nearest-neighbor interactions. In other words the poly-
mer adopts a square geometry. The exponents for a poly-
mer in this configuration are clearly given by v, =v, =
if calculated from any suitably defined measure of the size
of the polymer. In this phase the end-to-end distance is
no longer a suitable measure, since when 7— oo the value
of the end-to-end distance in the y direction depends on
how closely the polymer can adopt a square geometry for
a given length and does not indicate the overall size of
the polymer. These values for the correlation-length ex-
ponents are the same as those found for a collapsed iso-
tropic polymer.

It is known that on the phase boundary between the
collapsed and extended phases the interacting directed
walk may be expressed in terms of two independent
noninteracting directed walks living on two sublattices
composed of alternate columns of the lattice [2,3]. The
combined length of the two subwalks is L’, the number of
monomers not partaking in monomer-monomer interac-
tions. For clarity, all properties pertaining to the © point
will be indicated by the superscript ©. Because the walks
on each sublattice behave as if there were no monomer-
monomer interactions, the end-to-end distance for a sub-
walk is given by

RP<(L")? (14)
and
RP<(L"), (15)

where the superscript D indicates properties specific to
the subwalk. Because of the directed nature of the prob-
lem it follows immediately that 7{?=27i’f, that is

Ve
(L')~(L)™~ . (16)

If the average distance between the two subwalks is
defined as D, it follows by definition that

REO=RP+D . (17)

The subwalks are made up of the “excess’ bonds and are
connected by L —L' bonds undergoing nearest-neighbor
interactions. Given two subwalk configurations, the dis-
tance between them can only be changed by inserting or
removing entire rows of interacting monomers. This im-
plies that the average distance between the subwalks is
given by

_fL-L")

D 70

(18)

Because the subwalks are simple noninteracting directed
self-avoiding random walks, the positions of the horizon-
tal bonds on the lattice are uncorrelated within each
walk, and because the two walks are independent it is
known that they must be uncorrelated between walks.
This implies that

RP~(R2)?. (19)

The independence of the position of the horizontal bonds
also implies that Eq. (18) will apply not only to the sub-
walks, but any arbitrary subdivision of the excess bonds
into two sets, and therefore that D ~Ry9. From Egs. (18)
and (19), it can then be seen that

(L—L")

o ~(R)'V?. (20)

Substituting Eq. (16) into Eq. (20) and rearranging gives

Ve Ve
L—L"~L"". 1)

Equation (21) gives v=2. From Eq. (19) it can then be

seen that vye:§. These arguments, and the resulting ex-

ponents, also hold at the multicritical point.
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Having determined exactly the correlation-length ex-
ponents, it is of interest to calculate the entropic ex-
ponents. The method adopted here was to use exact
enumeration to calculate the canonical partition func-
tions for different L and then use the definitions given in
Egs. (6)—(8) directly. An alternative method also adopted
was to use these canonical partition functions as
coefficients of a series expansion of the grand canonical
partition function and use the methods of differential ap-
proximants to calculate the exponents. The exact
enumeration was performed in all cases to lengths up to
and including L =29. The direct calculation approach
requires a knowledge of the critical fugacity w, at the
chosen values of « and 7, and the series analysis methods
are found to work better when this is known.

If =1, the entropic exponents are known for the ordi-
nary transition for the solid boundary problem and the
special transition for the permeable interface problem. In
general the special entropic exponents for the solid
boundary problem are not expected to be the same as for
the interface problem. The location of the special transi-
tion is known to be at ©=V2—1 and k=1+1/V2. Us-
ing the method of differential approximants gives the
values of the surface entropic exponents at this point to
be

¥,=0.99+0.01 , (22)

¥,,=0.50+0.01 . (23)

The location of the collapse transition is also known
exactly. An exact enumeration was performed for direct-
ed polymers in the bulk at an interface with both ends
fixed to the surface and at a solid boundary with one end
and both ends on the boundary, respectively. This infor-
mation is then used in conjunction with the exact loca-
tion of the ordinary (ord) and special (sp) collapse transi-
tions to calculate all the entropic exponents for a collaps-
ing directed polymer. Results are shown, using both
direct calculation and the method of differential approxi-
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mants, in Table 1. It should be noted that the spread of
values calculated directly is frequently smaller than the
error bars quoted for the results of differential approxi-
mants. This is due to oscillations in the coefficients
which affect the accuracy of the extrapolation. These os-
cillations are not of odd-even-type, as in the isotropic
model on the square lattice, but display more complicat-
ed behavior. While the values calculated directly do not
show a monotonic trend, the spread of values decreases
with increasing L, and so reasonable error bars are ob-
tained by taking the highest and lowest values obtained.
The results would then give values for the entropic ex-
ponents as

y=0.33+0.01 , (24)
yitt=—0.0410.07 , (25)
y9d=—0.331+0.02 , (26)
y$d=—1.33+0.2, 27)
y$=0.341+0.02 , (28)
y$=0.0+0.06 . (29)

The superscript int refers to the special exponent for a
walk at a permeable interface. y" is trivially the same as
v and has therefore not been quoted separately.

In summary we have calculated exactly the
correlation-length exponents for a directed walk model in
the presence of an adsorbing substrate at the collapse
transition. At this transition we have calculated using
exact enumeration techniques the bulk and surface entro-
pic exponents. The results presented here satisfy the scal-

ing relation

y+v,=2¥1—vYu (30)
put forward by Privman, Forgacs, and Frisch for the

directed-polymer problem [8]. The exact value for v, and

the numerical results for the entropic exponents would

TABLE I. Results for the entropic exponents on the boundary between the collapsed and extended
phases. The row marked DA presents the results derived using the method of differential approxi-

mants.
L Y i y§ Yath vy r¥—rH
18 0.325909 —0.206 765 —0.339 691 —1.461296 0.342 249 0.310820
19 0.329 490 —0.147 404 —0.313286 —1.439280 0.351557 0.330 630
20 0.326 747 —0.151 947 —0.330985 —1.360901 0.345943 0.335674
21 0.331030 —0.068 547 —0.316748 —1.221403 0.325909 0.322484
22 0.327485 —0.154 811 —0.342318 —1.468 485 0.344 607 0.327906
23 0.330926 —0.118 480 —0.332957 —1.406 544 0.348 178 0.327955
24 0.331519 —0.125317 —0.330635 —1.362 849 0.349 819 0.327 365
25 0.331 898 —0.071 558 —0.327414 —1.263 983 0.358 457 0.314 845
26 0.330757 —0.127 770 —0.343913 —1.495956 0.349 786 0.328 764
27 0.332765 —0.100052 —0.337215 —1.432737 0.351263 0.332 805
28 0.332 745 —0.112 625 —0.338 668 —1.414785 0.349 971 0.334954
29 0.333078 —0.071 643 —0.336021 —1.320541 0.355 062 0.323 969
¥ y—ri y5 Y-S vy Y=
DA 0.3440.02 0.3840.05 —0.37+0.05 1.0+0.2 0.34+0.03 0.34+0.03
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seem to indicate possible exact values as [10]

Y=1, (31)
yint=0, (32)
rii=—1, (33)
rit=—%, (34)
y¥P=1, (35)
¥ =0 (36)
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The tables of coefficients from the exact enumeration
are available on request from the author.
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